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understanding	of	cancer’s	biology	and	behavior	in	response	to	standard	therapy.	It	also	provides	a	more	precise	prognosis,	investigation,	and	analysis	of	the	patient’s	cancer.	Over	the	years,	Artificial	Intelligence	(AI)	has	provided	a	significant	strength	in	radiogenomics.	In	this	paper,	we	offer	computational	and	oncological	prospects	of	the	role	of	AI
in	radiogenomics,	as	well	as	its	offers,	achievements,	opportunities,	and	limitations	in	the	current	clinical	practices.	Radiogenomics,	a	combination	of	“Radiomics”	and	“Genomics,”	using	Artificial	Intelligence	(AI)	has	recently	emerged	as	the	state-of-the-art	science	in	precision	medicine,	especially	in	oncology	care.	Radiogenomics	syndicates	large-
scale	quantifiable	data	extracted	from	radiological	medical	images	enveloped	with	personalized	genomic	phenotypes.	It	fabricates	a	prediction	model	through	various	AI	methods	to	stratify	the	risk	of	patients,	monitor	therapeutic	approaches,	and	assess	clinical	outcomes.	It	has	recently	shown	tremendous	achievements	in	prognosis,	treatment
planning,	survival	prediction,	heterogeneity	analysis,	reoccurrence,	and	progression-free	survival	for	human	cancer	study.	Although	AI	has	shown	immense	performance	in	oncology	care	in	various	clinical	aspects,	it	has	several	challenges	and	limitations.	The	proposed	review	provides	an	overview	of	radiogenomics	with	the	viewpoints	on	the	role	of	AI
in	terms	of	its	promises	for	computational	as	well	as	oncological	aspects	and	offers	achievements	and	opportunities	in	the	era	of	precision	medicine.	The	review	also	presents	various	recommendations	to	diminish	these	obstacles.	View	Full-Text	Keywords:	radiogenomics;	cancer;	oncology;	artificial	intelligence;	machine	learning;	deep	learning
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artificial	neural	network	is	an	interconnected	group	of	nodes,	inspired	by	a	simplification	of	neurons	in	a	brain.	Here,	each	circular	node	represents	an	artificial	neuron	and	an	arrow	represents	a	connection	from	the	output	of	one	artificial	neuron	to	the	input	of	another.	Artificial	neural	networks	(ANNs),	usually	simply	called	neural	networks	(NNs)
or,	more	simply	yet,	neural	nets,[1]	are	computing	systems	inspired	by	the	biological	neural	networks	that	constitute	animal	brains.	An	ANN	is	based	on	a	collection	of	connected	units	or	nodes	called	artificial	neurons,	which	loosely	model	the	neurons	in	a	biological	brain.	Each	connection,	like	the	synapses	in	a	biological	brain,	can	transmit	a	signal
to	other	neurons.	An	artificial	neuron	receives	signals	then	processes	them	and	can	signal	neurons	connected	to	it.	The	"signal"	at	a	connection	is	a	real	number,	and	the	output	of	each	neuron	is	computed	by	some	non-linear	function	of	the	sum	of	its	inputs.	The	connections	are	called	edges.	Neurons	and	edges	typically	have	a	weight	that	adjusts	as
learning	proceeds.	The	weight	increases	or	decreases	the	strength	of	the	signal	at	a	connection.	Neurons	may	have	a	threshold	such	that	a	signal	is	sent	only	if	the	aggregate	signal	crosses	that	threshold.	Typically,	neurons	are	aggregated	into	layers.	Different	layers	may	perform	different	transformations	on	their	inputs.	Signals	travel	from	the	first
layer	(the	input	layer),	to	the	last	layer	(the	output	layer),	possibly	after	traversing	the	layers	multiple	times.	Training	Neural	networks	learn	(or	are	trained)	by	processing	examples,	each	of	which	contains	a	known	"input"	and	"result,"	forming	probability-weighted	associations	between	the	two,	which	are	stored	within	the	data	structure	of	the	net
itself.	The	training	of	a	neural	network	from	a	given	example	is	usually	conducted	by	determining	the	difference	between	the	processed	output	of	the	network	(often	a	prediction)	and	a	target	output.	This	difference	is	the	error.	The	network	then	adjusts	its	weighted	associations	according	to	a	learning	rule	and	using	this	error	value.	Successive
adjustments	will	cause	the	neural	network	to	produce	output	which	is	increasingly	similar	to	the	target	output.	After	a	sufficient	number	of	these	adjustments	the	training	can	be	terminated	based	upon	certain	criteria.	This	is	known	as	supervised	learning.	Such	systems	"learn"	to	perform	tasks	by	considering	examples,	generally	without	being
programmed	with	task-specific	rules.	For	example,	in	image	recognition,	they	might	learn	to	identify	images	that	contain	cats	by	analyzing	example	images	that	have	been	manually	labeled	as	"cat"	or	"no	cat"	and	using	the	results	to	identify	cats	in	other	images.	They	do	this	without	any	prior	knowledge	of	cats,	for	example,	that	they	have	fur,	tails,
whiskers,	and	cat-like	faces.	Instead,	they	automatically	generate	identifying	characteristics	from	the	examples	that	they	process.	History	Main	article:	History	of	artificial	neural	networks	Warren	McCulloch	and	Walter	Pitts[2]	(1943)	opened	the	subject	by	creating	a	computational	model	for	neural	networks.[3]	In	the	late	1940s,	D.	O.	Hebb[4]
created	a	learning	hypothesis	based	on	the	mechanism	of	neural	plasticity	that	became	known	as	Hebbian	learning.	Farley	and	Wesley	A.	Clark[5]	(1954)	first	used	computational	machines,	then	called	"calculators",	to	simulate	a	Hebbian	network.	In	1958,	psychologist	Frank	Rosenblatt	invented	the	perceptron,	the	first	artificial	neural	network,[6][7]
[8][9]	funded	by	the	United	States	Office	of	Naval	Research.[10]	The	first	functional	networks	with	many	layers	were	published	by	Ivakhnenko	and	Lapa	in	1965,	as	the	Group	Method	of	Data	Handling.[11][12][13]	The	basics	of	continuous	backpropagation[11][14][15][16]	were	derived	in	the	context	of	control	theory	by	Kelley[17]	in	1960	and	by
Bryson	in	1961,[18]	using	principles	of	dynamic	programming.	Thereafter	research	stagnated	following	Minsky	and	Papert	(1969),[19]	who	discovered	that	basic	perceptrons	were	incapable	of	processing	the	exclusive-or	circuit	and	that	computers	lacked	sufficient	power	to	process	useful	neural	networks.	In	1970,	Seppo	Linnainmaa	published	the
general	method	for	automatic	differentiation	(AD)	of	discrete	connected	networks	of	nested	differentiable	functions.[20][21]	In	1973,	Dreyfus	used	backpropagation	to	adapt	parameters	of	controllers	in	proportion	to	error	gradients.[22]	Werbos's	(1975)	backpropagation	algorithm	enabled	practical	training	of	multi-layer	networks.	In	1982,	he	applied
Linnainmaa's	AD	method	to	neural	networks	in	the	way	that	became	widely	used.[14][23]	The	development	of	metal–oxide–semiconductor	(MOS)	very-large-scale	integration	(VLSI),	in	the	form	of	complementary	MOS	(CMOS)	technology,	enabled	increasing	MOS	transistor	counts	in	digital	electronics.	This	provided	more	processing	power	for	the
development	of	practical	artificial	neural	networks	in	the	1980s.[24]	In	1986	Rumelhart,	Hinton	and	Williams	showed	that	backpropagation	learned	interesting	internal	representations	of	words	as	feature	vectors	when	trained	to	predict	the	next	word	in	a	sequence.[25]	From	1988	onward,[26][27]	the	use	of	neural	networks	transformed	the	field	of
protein	structure	prediction,	in	particular	when	the	first	cascading	networks	were	trained	on	profiles	(matrices)	produced	by	multiple	sequence	alignments.[28]	In	1992,	max-pooling	was	introduced	to	help	with	least-shift	invariance	and	tolerance	to	deformation	to	aid	3D	object	recognition.[29][30][31]	Schmidhuber	adopted	a	multi-level	hierarchy	of
networks	(1992)	pre-trained	one	level	at	a	time	by	unsupervised	learning	and	fine-tuned	by	backpropagation.[32]	Neural	networks'	early	successes	included	predicting	the	stock	market	and	in	1995	a	(mostly)	self-driving	car.[a][33]	Geoffrey	Hinton	et	al.	(2006)	proposed	learning	a	high-level	representation	using	successive	layers	of	binary	or	real-
valued	latent	variables	with	a	restricted	Boltzmann	machine[34]	to	model	each	layer.	In	2012,	Ng	and	Dean	created	a	network	that	learned	to	recognize	higher-level	concepts,	such	as	cats,	only	from	watching	unlabeled	images.[35]	Unsupervised	pre-training	and	increased	computing	power	from	GPUs	and	distributed	computing	allowed	the	use	of
larger	networks,	particularly	in	image	and	visual	recognition	problems,	which	became	known	as	"deep	learning".[36]	Ciresan	and	colleagues	(2010)[37]	showed	that	despite	the	vanishing	gradient	problem,	GPUs	make	backpropagation	feasible	for	many-layered	feedforward	neural	networks.[38]	Between	2009	and	2012,	ANNs	began	winning	prizes	in
image	recognition	contests,	approaching	human	level	performance	on	various	tasks,	initially	in	pattern	recognition	and	handwriting	recognition.[39][40]	For	example,	the	bi-directional	and	multi-dimensional	long	short-term	memory	(LSTM)[41][42]	of	Graves	et	al.	won	three	competitions	in	connected	handwriting	recognition	in	2009	without	any	prior
knowledge	about	the	three	languages	to	be	learned.[41][42]	Ciresan	and	colleagues	built	the	first	pattern	recognizers	to	achieve	human-competitive/superhuman	performance[43]	on	benchmarks	such	as	traffic	sign	recognition	(IJCNN	2012).	Models	This	section	may	be	confusing	or	unclear	to	readers.	Please	help	clarify	the	section.	There	might	be	a
discussion	about	this	on	the	talk	page.	(April	2017)	(Learn	how	and	when	to	remove	this	template	message)Further	information:	Mathematics	of	artificial	neural	networks	Neuron	and	myelinated	axon,	with	signal	flow	from	inputs	at	dendrites	to	outputs	at	axon	terminals	ANNs	began	as	an	attempt	to	exploit	the	architecture	of	the	human	brain	to
perform	tasks	that	conventional	algorithms	had	little	success	with.	They	soon	reoriented	towards	improving	empirical	results,	mostly	abandoning	attempts	to	remain	true	to	their	biological	precursors.	Neurons	are	connected	to	each	other	in	various	patterns,	to	allow	the	output	of	some	neurons	to	become	the	input	of	others.	The	network	forms	a
directed,	weighted	graph.[44]	An	artificial	neural	network	consists	of	a	collection	of	simulated	neurons.	Each	neuron	is	a	node	which	is	connected	to	other	nodes	via	links	that	correspond	to	biological	axon-synapse-dendrite	connections.	Each	link	has	a	weight,	which	determines	the	strength	of	one	node's	influence	on	another.[45]	Artificial	neurons
ANNs	are	composed	of	artificial	neurons	which	are	conceptually	derived	from	biological	neurons.	Each	artificial	neuron	has	inputs	and	produces	a	single	output	which	can	be	sent	to	multiple	other	neurons.[46]	The	inputs	can	be	the	feature	values	of	a	sample	of	external	data,	such	as	images	or	documents,	or	they	can	be	the	outputs	of	other	neurons.
The	outputs	of	the	final	output	neurons	of	the	neural	net	accomplish	the	task,	such	as	recognizing	an	object	in	an	image.	To	find	the	output	of	the	neuron	we	take	the	weighted	sum	of	all	the	inputs,	weighted	by	the	weights	of	the	connections	from	the	inputs	to	the	neuron.	We	add	a	bias	term	to	this	sum.[47]	This	weighted	sum	is	sometimes	called	the
activation.	This	weighted	sum	is	then	passed	through	a	(usually	nonlinear)	activation	function	to	produce	the	output.	The	initial	inputs	are	external	data,	such	as	images	and	documents.	The	ultimate	outputs	accomplish	the	task,	such	as	recognizing	an	object	in	an	image.[48]	Organization	The	neurons	are	typically	organized	into	multiple	layers,
especially	in	deep	learning.	Neurons	of	one	layer	connect	only	to	neurons	of	the	immediately	preceding	and	immediately	following	layers.	The	layer	that	receives	external	data	is	the	input	layer.	The	layer	that	produces	the	ultimate	result	is	the	output	layer.	In	between	them	are	zero	or	more	hidden	layers.	Single	layer	and	unlayered	networks	are	also
used.	Between	two	layers,	multiple	connection	patterns	are	possible.	They	can	be	'fully	connected',	with	every	neuron	in	one	layer	connecting	to	every	neuron	in	the	next	layer.	They	can	be	pooling,	where	a	group	of	neurons	in	one	layer	connect	to	a	single	neuron	in	the	next	layer,	thereby	reducing	the	number	of	neurons	in	that	layer.[49]	Neurons
with	only	such	connections	form	a	directed	acyclic	graph	and	are	known	as	feedforward	networks.[50]	Alternatively,	networks	that	allow	connections	between	neurons	in	the	same	or	previous	layers	are	known	as	recurrent	networks.[51]	Hyperparameter	Main	article:	Hyperparameter	(machine	learning)	A	hyperparameter	is	a	constant	parameter
whose	value	is	set	before	the	learning	process	begins.	The	values	of	parameters	are	derived	via	learning.	Examples	of	hyperparameters	include	learning	rate,	the	number	of	hidden	layers	and	batch	size.[52]	The	values	of	some	hyperparameters	can	be	dependent	on	those	of	other	hyperparameters.	For	example,	the	size	of	some	layers	can	depend	on
the	overall	number	of	layers.	Learning	This	section	includes	a	list	of	references,	related	reading	or	external	links,	but	its	sources	remain	unclear	because	it	lacks	inline	citations.	Please	help	to	improve	this	section	by	introducing	more	precise	citations.	(August	2019)	(Learn	how	and	when	to	remove	this	template	message)See	also:	Mathematical
optimization,	Estimation	theory,	and	Machine	learning	Learning	is	the	adaptation	of	the	network	to	better	handle	a	task	by	considering	sample	observations.	Learning	involves	adjusting	the	weights	(and	optional	thresholds)	of	the	network	to	improve	the	accuracy	of	the	result.	This	is	done	by	minimizing	the	observed	errors.	Learning	is	complete	when
examining	additional	observations	does	not	usefully	reduce	the	error	rate.	Even	after	learning,	the	error	rate	typically	does	not	reach	0.	If	after	learning,	the	error	rate	is	too	high,	the	network	typically	must	be	redesigned.	Practically	this	is	done	by	defining	a	cost	function	that	is	evaluated	periodically	during	learning.	As	long	as	its	output	continues	to
decline,	learning	continues.	The	cost	is	frequently	defined	as	a	statistic	whose	value	can	only	be	approximated.	The	outputs	are	actually	numbers,	so	when	the	error	is	low,	the	difference	between	the	output	(almost	certainly	a	cat)	and	the	correct	answer	(cat)	is	small.	Learning	attempts	to	reduce	the	total	of	the	differences	across	the	observations.
Most	learning	models	can	be	viewed	as	a	straightforward	application	of	optimization	theory	and	statistical	estimation.[44][53]	Learning	rate	The	learning	rate	defines	the	size	of	the	corrective	steps	that	the	model	takes	to	adjust	for	errors	in	each	observation.[54]	A	high	learning	rate	shortens	the	training	time,	but	with	lower	ultimate	accuracy,	while
a	lower	learning	rate	takes	longer,	but	with	the	potential	for	greater	accuracy.	Optimizations	such	as	Quickprop	are	primarily	aimed	at	speeding	up	error	minimization,	while	other	improvements	mainly	try	to	increase	reliability.	In	order	to	avoid	oscillation	inside	the	network	such	as	alternating	connection	weights,	and	to	improve	the	rate	of
convergence,	refinements	use	an	adaptive	learning	rate	that	increases	or	decreases	as	appropriate.[55]	The	concept	of	momentum	allows	the	balance	between	the	gradient	and	the	previous	change	to	be	weighted	such	that	the	weight	adjustment	depends	to	some	degree	on	the	previous	change.	A	momentum	close	to	0	emphasizes	the	gradient,	while
a	value	close	to	1	emphasizes	the	last	change.	Cost	function	While	it	is	possible	to	define	a	cost	function	ad	hoc,	frequently	the	choice	is	determined	by	the	function's	desirable	properties	(such	as	convexity)	or	because	it	arises	from	the	model	(e.g.	in	a	probabilistic	model	the	model's	posterior	probability	can	be	used	as	an	inverse	cost).
Backpropagation	Main	article:	Backpropagation	Backpropagation	is	a	method	used	to	adjust	the	connection	weights	to	compensate	for	each	error	found	during	learning.	The	error	amount	is	effectively	divided	among	the	connections.	Technically,	backprop	calculates	the	gradient	(the	derivative)	of	the	cost	function	associated	with	a	given	state	with
respect	to	the	weights.	The	weight	updates	can	be	done	via	stochastic	gradient	descent	or	other	methods,	such	as	Extreme	Learning	Machines,[56]	"No-prop"	networks,[57]	training	without	backtracking,[58]	"weightless"	networks,[59][60]	and	non-connectionist	neural	networks.[citation	needed]	Learning	paradigms	This	section	includes	a	list	of
references,	related	reading	or	external	links,	but	its	sources	remain	unclear	because	it	lacks	inline	citations.	Please	help	to	improve	this	section	by	introducing	more	precise	citations.	(August	2019)	(Learn	how	and	when	to	remove	this	template	message)	The	three	major	learning	paradigms	are	supervised	learning,	unsupervised	learning	and
reinforcement	learning.	They	each	correspond	to	a	particular	learning	task	Supervised	learning	Supervised	learning	uses	a	set	of	paired	inputs	and	desired	outputs.	The	learning	task	is	to	produce	the	desired	output	for	each	input.	In	this	case	the	cost	function	is	related	to	eliminating	incorrect	deductions.[61]	A	commonly	used	cost	is	the	mean-
squared	error,	which	tries	to	minimize	the	average	squared	error	between	the	network's	output	and	the	desired	output.	Tasks	suited	for	supervised	learning	are	pattern	recognition	(also	known	as	classification)	and	regression	(also	known	as	function	approximation).	Supervised	learning	is	also	applicable	to	sequential	data	(e.g.,	for	hand	writing,
speech	and	gesture	recognition).	This	can	be	thought	of	as	learning	with	a	"teacher",	in	the	form	of	a	function	that	provides	continuous	feedback	on	the	quality	of	solutions	obtained	thus	far.	Unsupervised	learning	In	unsupervised	learning,	input	data	is	given	along	with	the	cost	function,	some	function	of	the	data	x	{\displaystyle	\textstyle	x}	and	the
network's	output.	The	cost	function	is	dependent	on	the	task	(the	model	domain)	and	any	a	priori	assumptions	(the	implicit	properties	of	the	model,	its	parameters	and	the	observed	variables).	As	a	trivial	example,	consider	the	model	f	(	x	)	=	a	{\displaystyle	\textstyle	f(x)=a}	where	a	{\displaystyle	\textstyle	a}	is	a	constant	and	the	cost	C	=	E	[	(	x	−	f	(
x	)	)	2	]	{\displaystyle	\textstyle	C=E[(x-f(x))^{2}]}	.	Minimizing	this	cost	produces	a	value	of	a	{\displaystyle	\textstyle	a}	that	is	equal	to	the	mean	of	the	data.	The	cost	function	can	be	much	more	complicated.	Its	form	depends	on	the	application:	for	example,	in	compression	it	could	be	related	to	the	mutual	information	between	x	{\displaystyle
\textstyle	x}	and	f	(	x	)	{\displaystyle	\textstyle	f(x)}	,	whereas	in	statistical	modeling,	it	could	be	related	to	the	posterior	probability	of	the	model	given	the	data	(note	that	in	both	of	those	examples	those	quantities	would	be	maximized	rather	than	minimized).	Tasks	that	fall	within	the	paradigm	of	unsupervised	learning	are	in	general	estimation
problems;	the	applications	include	clustering,	the	estimation	of	statistical	distributions,	compression	and	filtering.	Reinforcement	learning	Main	article:	Reinforcement	learning	See	also:	Stochastic	control	In	applications	such	as	playing	video	games,	an	actor	takes	a	string	of	actions,	receiving	a	generally	unpredictable	response	from	the	environment
after	each	one.	The	goal	is	to	win	the	game,	i.e.,	generate	the	most	positive	(lowest	cost)	responses.	In	reinforcement	learning,	the	aim	is	to	weight	the	network	(devise	a	policy)	to	perform	actions	that	minimize	long-term	(expected	cumulative)	cost.	At	each	point	in	time	the	agent	performs	an	action	and	the	environment	generates	an	observation	and
an	instantaneous	cost,	according	to	some	(usually	unknown)	rules.	The	rules	and	the	long-term	cost	usually	only	can	be	estimated.	At	any	juncture,	the	agent	decides	whether	to	explore	new	actions	to	uncover	their	costs	or	to	exploit	prior	learning	to	proceed	more	quickly.	Formally	the	environment	is	modeled	as	a	Markov	decision	process	(MDP)	with
states	s	1	,	.	.	.	,	s	n	∈	S	{\displaystyle	\textstyle	{s_{1},...,s_{n}}\in	S}	and	actions	a	1	,	.	.	.	,	a	m	∈	A	{\displaystyle	\textstyle	{a_{1},...,a_{m}}\in	A}	.	Because	the	state	transitions	are	not	known,	probability	distributions	are	used	instead:	the	instantaneous	cost	distribution	P	(	c	t	|	s	t	)	{\displaystyle	\textstyle	P(c_{t}|s_{t})}	,	the	observation
distribution	P	(	x	t	|	s	t	)	{\displaystyle	\textstyle	P(x_{t}|s_{t})}	and	the	transition	distribution	P	(	s	t	+	1	|	s	t	,	a	t	)	{\displaystyle	\textstyle	P(s_{t+1}|s_{t},a_{t})}	,	while	a	policy	is	defined	as	the	conditional	distribution	over	actions	given	the	observations.	Taken	together,	the	two	define	a	Markov	chain	(MC).	The	aim	is	to	discover	the	lowest-cost
MC.	ANNs	serve	as	the	learning	component	in	such	applications.[62][63]	Dynamic	programming	coupled	with	ANNs	(giving	neurodynamic	programming)[64]	has	been	applied	to	problems	such	as	those	involved	in	vehicle	routing,[65]	video	games,	natural	resource	management[66][67]	and	medicine[68]	because	of	ANNs	ability	to	mitigate	losses	of
accuracy	even	when	reducing	the	discretization	grid	density	for	numerically	approximating	the	solution	of	control	problems.	Tasks	that	fall	within	the	paradigm	of	reinforcement	learning	are	control	problems,	games	and	other	sequential	decision	making	tasks.	Self-learning	Self-learning	in	neural	networks	was	introduced	in	1982	along	with	a	neural
network	capable	of	self-learning	named	Crossbar	Adaptive	Array	(CAA).[69]	It	is	a	system	with	only	one	input,	situation	s,	and	only	one	output,	action	(or	behavior)	a.	It	has	neither	external	advice	input	nor	external	reinforcement	input	from	the	environment.	The	CAA	computes,	in	a	crossbar	fashion,	both	decisions	about	actions	and	emotions
(feelings)	about	encountered	situations.	The	system	is	driven	by	the	interaction	between	cognition	and	emotion.[70]	Given	the	memory	matrix,	W	=||w(a,s)||,	the	crossbar	self-learning	algorithm	in	each	iteration	performs	the	following	computation:	In	situation	s	perform	action	a;	Receive	consequence	situation	s';	Compute	emotion	of	being	in
consequence	situation	v(s');	Update	crossbar	memory	w'(a,s)	=	w(a,s)	+	v(s').	The	backpropagated	value	(secondary	reinforcement)	is	the	emotion	toward	the	consequence	situation.	The	CAA	exists	in	two	environments,	one	is	behavioral	environment	where	it	behaves,	and	the	other	is	genetic	environment,	where	from	it	initially	and	only	once	receives
initial	emotions	about	to	be	encountered	situations	in	the	behavioral	environment.	Having	received	the	genome	vector	(species	vector)	from	the	genetic	environment,	the	CAA	will	learn	a	goal-seeking	behavior,	in	the	behavioral	environment	that	contains	both	desirable	and	undesirable	situations.[71]	Neuroevolution	Main	article:	Neuroevolution
Neuroevolution	can	create	neural	network	topologies	and	weights	using	evolutionary	computation.	It	is	competitive	with	sophisticated	gradient	descent	approaches[citation	needed].	One	advantage	of	neuroevolution	is	that	it	may	be	less	prone	to	get	caught	in	"dead	ends".[72]	Stochastic	neural	network	Stochastic	neural	networks	originating	from
Sherrington–Kirkpatrick	models	are	a	type	of	artificial	neural	network	built	by	introducing	random	variations	into	the	network,	either	by	giving	the	network's	artificial	neurons	stochastic	transfer	functions,	or	by	giving	them	stochastic	weights.	This	makes	them	useful	tools	for	optimization	problems,	since	the	random	fluctuations	help	the	network
escape	from	local	minima.[73]	Other	In	a	Bayesian	framework,	a	distribution	over	the	set	of	allowed	models	is	chosen	to	minimize	the	cost.	Evolutionary	methods,[74]	gene	expression	programming,[75]	simulated	annealing,[76]	expectation-maximization,	non-parametric	methods	and	particle	swarm	optimization[77]	are	other	learning	algorithms.
Convergent	recursion	is	a	learning	algorithm	for	cerebellar	model	articulation	controller	(CMAC)	neural	networks.[78][79]	Modes	This	section	includes	a	list	of	references,	related	reading	or	external	links,	but	its	sources	remain	unclear	because	it	lacks	inline	citations.	Please	help	to	improve	this	section	by	introducing	more	precise	citations.	(August
2019)	(Learn	how	and	when	to	remove	this	template	message)	Two	modes	of	learning	are	available:	stochastic	and	batch.	In	stochastic	learning,	each	input	creates	a	weight	adjustment.	In	batch	learning	weights	are	adjusted	based	on	a	batch	of	inputs,	accumulating	errors	over	the	batch.	Stochastic	learning	introduces	"noise"	into	the	process,	using
the	local	gradient	calculated	from	one	data	point;	this	reduces	the	chance	of	the	network	getting	stuck	in	local	minima.	However,	batch	learning	typically	yields	a	faster,	more	stable	descent	to	a	local	minimum,	since	each	update	is	performed	in	the	direction	of	the	batch's	average	error.	A	common	compromise	is	to	use	"mini-batches",	small	batches
with	samples	in	each	batch	selected	stochastically	from	the	entire	data	set.	Types	Main	article:	Types	of	artificial	neural	networks	ANNs	have	evolved	into	a	broad	family	of	techniques	that	have	advanced	the	state	of	the	art	across	multiple	domains.	The	simplest	types	have	one	or	more	static	components,	including	number	of	units,	number	of	layers,
unit	weights	and	topology.	Dynamic	types	allow	one	or	more	of	these	to	evolve	via	learning.	The	latter	are	much	more	complicated,	but	can	shorten	learning	periods	and	produce	better	results.	Some	types	allow/require	learning	to	be	"supervised"	by	the	operator,	while	others	operate	independently.	Some	types	operate	purely	in	hardware,	while
others	are	purely	software	and	run	on	general	purpose	computers.	Some	of	the	main	breakthroughs	include:	convolutional	neural	networks	that	have	proven	particularly	successful	in	processing	visual	and	other	two-dimensional	data;[80][81]	long	short-term	memory	avoid	the	vanishing	gradient	problem[82]	and	can	handle	signals	that	have	a	mix	of
low	and	high	frequency	components	aiding	large-vocabulary	speech	recognition,[83][84]	text-to-speech	synthesis,[85][14][86]	and	photo-real	talking	heads;[87]	competitive	networks	such	as	generative	adversarial	networks	in	which	multiple	networks	(of	varying	structure)	compete	with	each	other,	on	tasks	such	as	winning	a	game[88]	or	on	deceiving
the	opponent	about	the	authenticity	of	an	input.[89]	Network	design	Main	article:	Neural	architecture	search	Neural	architecture	search	(NAS)	uses	machine	learning	to	automate	ANN	design.	Various	approaches	to	NAS	have	designed	networks	that	compare	well	with	hand-designed	systems.	The	basic	search	algorithm	is	to	propose	a	candidate
model,	evaluate	it	against	a	dataset	and	use	the	results	as	feedback	to	teach	the	NAS	network.[90]	Available	systems	include	AutoML	and	AutoKeras.[91]	Design	issues	include	deciding	the	number,	type	and	connectedness	of	network	layers,	as	well	as	the	size	of	each	and	the	connection	type	(full,	pooling,	...).	Hyperparameters	must	also	be	defined	as
part	of	the	design	(they	are	not	learned),	governing	matters	such	as	how	many	neurons	are	in	each	layer,	learning	rate,	step,	stride,	depth,	receptive	field	and	padding	(for	CNNs),	etc.[92]	Use	This	section	does	not	cite	any	sources.	Please	help	improve	this	section	by	adding	citations	to	reliable	sources.	Unsourced	material	may	be	challenged	and
removed.	(November	2020)	(Learn	how	and	when	to	remove	this	template	message)	Using	Artificial	neural	networks	requires	an	understanding	of	their	characteristics.	Choice	of	model:	This	depends	on	the	data	representation	and	the	application.	Overly	complex	models	are	slow	learning.	Learning	algorithm:	Numerous	trade-offs	exist	between
learning	algorithms.	Almost	any	algorithm	will	work	well	with	the	correct	hyperparameters	for	training	on	a	particular	data	set.	However,	selecting	and	tuning	an	algorithm	for	training	on	unseen	data	requires	significant	experimentation.	Robustness:	If	the	model,	cost	function	and	learning	algorithm	are	selected	appropriately,	the	resulting	ANN	can
become	robust.	ANN	capabilities	fall	within	the	following	broad	categories:[citation	needed]	Function	approximation,	or	regression	analysis,	including	time	series	prediction,	fitness	approximation	and	modeling.	Classification,	including	pattern	and	sequence	recognition,	novelty	detection	and	sequential	decision	making.[93]	Data	processing,	including
filtering,	clustering,	blind	source	separation	and	compression.	Robotics,	including	directing	manipulators	and	prostheses.	Applications	Because	of	their	ability	to	reproduce	and	model	nonlinear	processes,	artificial	neural	networks	have	found	applications	in	many	disciplines.	Application	areas	include	system	identification	and	control	(vehicle	control,
trajectory	prediction,[94]	process	control,	natural	resource	management),	quantum	chemistry,[95]	general	game	playing,[96]	pattern	recognition	(radar	systems,	face	identification,	signal	classification,[97]	3D	reconstruction,[98]	object	recognition	and	more),	sensor	data	analysis,[99]	sequence	recognition	(gesture,	speech,	handwritten	and	printed
text	recognition[100]),	medical	diagnosis,	finance[101]	(e.g.	automated	trading	systems),	data	mining,	visualization,	machine	translation,	social	network	filtering[102]	and	e-mail	spam	filtering.	ANNs	have	been	used	to	diagnose	several	types	of	cancers[103][104]	and	to	distinguish	highly	invasive	cancer	cell	lines	from	less	invasive	lines	using	only	cell
shape	information.[105][106]	ANNs	have	been	used	to	accelerate	reliability	analysis	of	infrastructures	subject	to	natural	disasters[107][108]	and	to	predict	foundation	settlements.[109]	ANNs	have	also	been	used	for	building	black-box	models	in	geoscience:	hydrology,[110][111]	ocean	modelling	and	coastal	engineering,[112][113]	and
geomorphology.[114]	ANNs	have	been	employed	in	cybersecurity,	with	the	objective	to	discriminate	between	legitimate	activities	and	malicious	ones.	For	example,	machine	learning	has	been	used	for	classifying	Android	malware,[115]	for	identifying	domains	belonging	to	threat	actors	and	for	detecting	URLs	posing	a	security	risk.[116]	Research	is
underway	on	ANN	systems	designed	for	penetration	testing,	for	detecting	botnets,[117]	credit	cards	frauds[118]	and	network	intrusions.	ANNs	have	been	proposed	as	a	tool	to	solve	partial	differential	equations	in	physics[119][120][121]	and	simulate	the	properties	of	many-body	open	quantum	systems.[122][123][124][125]	In	brain	research	ANNs
have	studied	short-term	behavior	of	individual	neurons,[126]	the	dynamics	of	neural	circuitry	arise	from	interactions	between	individual	neurons	and	how	behavior	can	arise	from	abstract	neural	modules	that	represent	complete	subsystems.	Studies	considered	long-and	short-term	plasticity	of	neural	systems	and	their	relation	to	learning	and	memory
from	the	individual	neuron	to	the	system	level.	Theoretical	properties	Computational	power	The	multilayer	perceptron	is	a	universal	function	approximator,	as	proven	by	the	universal	approximation	theorem.	However,	the	proof	is	not	constructive	regarding	the	number	of	neurons	required,	the	network	topology,	the	weights	and	the	learning
parameters.	A	specific	recurrent	architecture	with	rational-valued	weights	(as	opposed	to	full	precision	real	number-valued	weights)	has	the	power	of	a	universal	Turing	machine,[127]	using	a	finite	number	of	neurons	and	standard	linear	connections.	Further,	the	use	of	irrational	values	for	weights	results	in	a	machine	with	super-Turing	power.[128]
Capacity	A	model's	"capacity"	property	corresponds	to	its	ability	to	model	any	given	function.	It	is	related	to	the	amount	of	information	that	can	be	stored	in	the	network	and	to	the	notion	of	complexity.	Two	notions	of	capacity	are	known	by	the	community.	The	information	capacity	and	the	VC	Dimension.	The	information	capacity	of	a	perceptron	is
intensively	discussed	in	Sir	David	MacKay's	book[129]	which	summarizes	work	by	Thomas	Cover.[130]	The	capacity	of	a	network	of	standard	neurons	(not	convolutional)	can	be	derived	by	four	rules[131]	that	derive	from	understanding	a	neuron	as	an	electrical	element.	The	information	capacity	captures	the	functions	modelable	by	the	network	given
any	data	as	input.	The	second	notion,	is	the	VC	dimension.	VC	Dimension	uses	the	principles	of	measure	theory	and	finds	the	maximum	capacity	under	the	best	possible	circumstances.	This	is,	given	input	data	in	a	specific	form.	As	noted	in,[129]	the	VC	Dimension	for	arbitrary	inputs	is	half	the	information	capacity	of	a	Perceptron.	The	VC	Dimension
for	arbitrary	points	is	sometimes	referred	to	as	Memory	Capacity.[132]	Convergence	Models	may	not	consistently	converge	on	a	single	solution,	firstly	because	local	minima	may	exist,	depending	on	the	cost	function	and	the	model.	Secondly,	the	optimization	method	used	might	not	guarantee	to	converge	when	it	begins	far	from	any	local	minimum.
Thirdly,	for	sufficiently	large	data	or	parameters,	some	methods	become	impractical.	Another	issue	worthy	to	mention	is	that	training	may	cross	some	Saddle	point	which	may	lead	the	convergence	to	the	wrong	direction.	The	convergence	behavior	of	certain	types	of	ANN	architectures	are	more	understood	than	others.	When	the	width	of	network
approaches	to	infinity,	the	ANN	is	well	described	by	its	first	order	Taylor	expansion	throughout	training,	and	so	inherits	the	convergence	behavior	of	affine	models.[133][134]	Another	example	is	when	parameters	are	small,	it	is	observed	that	ANNs	often	fits	target	functions	from	low	to	high	frequencies.	This	behavior	is	referred	to	as	the	spectral	bias,
or	frequency	principle,	of	neural	networks.[135][136][137][138]	This	phenomenon	is	the	opposite	to	the	behavior	of	some	well	studied	iterative	numerical	schemes	such	as	Jacobi	method.	Deeper	neural	networks	have	been	observed	to	be	more	biased	towards	low	frequency	functions.[139]	Generalization	and	statistics	This	section	includes	a	list	of
references,	related	reading	or	external	links,	but	its	sources	remain	unclear	because	it	lacks	inline	citations.	Please	help	to	improve	this	section	by	introducing	more	precise	citations.	(August	2019)	(Learn	how	and	when	to	remove	this	template	message)	Applications	whose	goal	is	to	create	a	system	that	generalizes	well	to	unseen	examples,	face	the
possibility	of	over-training.	This	arises	in	convoluted	or	over-specified	systems	when	the	network	capacity	significantly	exceeds	the	needed	free	parameters.	Two	approaches	address	over-training.	The	first	is	to	use	cross-validation	and	similar	techniques	to	check	for	the	presence	of	over-training	and	to	select	hyperparameters	to	minimize	the
generalization	error.	The	second	is	to	use	some	form	of	regularization.	This	concept	emerges	in	a	probabilistic	(Bayesian)	framework,	where	regularization	can	be	performed	by	selecting	a	larger	prior	probability	over	simpler	models;	but	also	in	statistical	learning	theory,	where	the	goal	is	to	minimize	over	two	quantities:	the	'empirical	risk'	and	the
'structural	risk',	which	roughly	corresponds	to	the	error	over	the	training	set	and	the	predicted	error	in	unseen	data	due	to	overfitting.	Confidence	analysis	of	a	neural	network	Supervised	neural	networks	that	use	a	mean	squared	error	(MSE)	cost	function	can	use	formal	statistical	methods	to	determine	the	confidence	of	the	trained	model.	The	MSE
on	a	validation	set	can	be	used	as	an	estimate	for	variance.	This	value	can	then	be	used	to	calculate	the	confidence	interval	of	network	output,	assuming	a	normal	distribution.	A	confidence	analysis	made	this	way	is	statistically	valid	as	long	as	the	output	probability	distribution	stays	the	same	and	the	network	is	not	modified.	By	assigning	a	softmax
activation	function,	a	generalization	of	the	logistic	function,	on	the	output	layer	of	the	neural	network	(or	a	softmax	component	in	a	component-based	network)	for	categorical	target	variables,	the	outputs	can	be	interpreted	as	posterior	probabilities.	This	is	useful	in	classification	as	it	gives	a	certainty	measure	on	classifications.	The	softmax	activation
function	is:	y	i	=	e	x	i	∑	j	=	1	c	e	x	j	{\displaystyle	y_{i}={\frac	{e^{x_{i}}}{\sum	_{j=1}^{c}e^{x_{j}}}}}	Criticism	Training	A	common	criticism	of	neural	networks,	particularly	in	robotics,	is	that	they	require	too	much	training	for	real-world	operation.[citation	needed]	Potential	solutions	include	randomly	shuffling	training	examples,	by	using	a
numerical	optimization	algorithm	that	does	not	take	too	large	steps	when	changing	the	network	connections	following	an	example,	grouping	examples	in	so-called	mini-batches	and/or	introducing	a	recursive	least	squares	algorithm	for	CMAC.[78]	Theory	A	fundamental	objection	is	that	ANNs	do	not	sufficiently	reflect	neuronal	function.
Backpropagation	is	a	critical	step,	although	no	such	mechanism	exists	in	biological	neural	networks.[140]	How	information	is	coded	by	real	neurons	is	not	known.	Sensor	neurons	fire	action	potentials	more	frequently	with	sensor	activation	and	muscle	cells	pull	more	strongly	when	their	associated	motor	neurons	receive	action	potentials	more
frequently.[141]	Other	than	the	case	of	relaying	information	from	a	sensor	neuron	to	a	motor	neuron,	almost	nothing	of	the	principles	of	how	information	is	handled	by	biological	neural	networks	is	known.	A	central	claim	of	ANNs	is	that	they	embody	new	and	powerful	general	principles	for	processing	information.	These	principles	are	ill-defined.	It	is
often	claimed	that	they	are	emergent	from	the	network	itself.	This	allows	simple	statistical	association	(the	basic	function	of	artificial	neural	networks)	to	be	described	as	learning	or	recognition.	In	1997,	Alexander	Dewdney	commented	that,	as	a	result,	artificial	neural	networks	have	a	"something-for-nothing	quality,	one	that	imparts	a	peculiar	aura
of	laziness	and	a	distinct	lack	of	curiosity	about	just	how	good	these	computing	systems	are.	No	human	hand	(or	mind)	intervenes;	solutions	are	found	as	if	by	magic;	and	no	one,	it	seems,	has	learned	anything".[142]	One	response	to	Dewdney	is	that	neural	networks	handle	many	complex	and	diverse	tasks,	ranging	from	autonomously	flying
aircraft[143]	to	detecting	credit	card	fraud	to	mastering	the	game	of	Go.	Technology	writer	Roger	Bridgman	commented:	Neural	networks,	for	instance,	are	in	the	dock	not	only	because	they	have	been	hyped	to	high	heaven,	(what	hasn't?)	but	also	because	you	could	create	a	successful	net	without	understanding	how	it	worked:	the	bunch	of	numbers
that	captures	its	behaviour	would	in	all	probability	be	"an	opaque,	unreadable	table...valueless	as	a	scientific	resource".	In	spite	of	his	emphatic	declaration	that	science	is	not	technology,	Dewdney	seems	here	to	pillory	neural	nets	as	bad	science	when	most	of	those	devising	them	are	just	trying	to	be	good	engineers.	An	unreadable	table	that	a	useful
machine	could	read	would	still	be	well	worth	having.[144]	Biological	brains	use	both	shallow	and	deep	circuits	as	reported	by	brain	anatomy,[145]	displaying	a	wide	variety	of	invariance.	Weng[146]	argued	that	the	brain	self-wires	largely	according	to	signal	statistics	and	therefore,	a	serial	cascade	cannot	catch	all	major	statistical	dependencies.
Hardware	Large	and	effective	neural	networks	require	considerable	computing	resources.[147]	While	the	brain	has	hardware	tailored	to	the	task	of	processing	signals	through	a	graph	of	neurons,	simulating	even	a	simplified	neuron	on	von	Neumann	architecture	may	consume	vast	amounts	of	memory	and	storage.	Furthermore,	the	designer	often
needs	to	transmit	signals	through	many	of	these	connections	and	their	associated	neurons	–	which	require	enormous	CPU	power	and	time.	Schmidhuber	noted	that	the	resurgence	of	neural	networks	in	the	twenty-first	century	is	largely	attributable	to	advances	in	hardware:	from	1991	to	2015,	computing	power,	especially	as	delivered	by	GPGPUs	(on
GPUs),	has	increased	around	a	million-fold,	making	the	standard	backpropagation	algorithm	feasible	for	training	networks	that	are	several	layers	deeper	than	before.[11]	The	use	of	accelerators	such	as	FPGAs	and	GPUs	can	reduce	training	times	from	months	to	days.[147]	Neuromorphic	engineering	or	a	physical	neural	network	addresses	the
hardware	difficulty	directly,	by	constructing	non-von-Neumann	chips	to	directly	implement	neural	networks	in	circuitry.	Another	type	of	chip	optimized	for	neural	network	processing	is	called	a	Tensor	Processing	Unit,	or	TPU.[148]	Practical	counterexamples	Analyzing	what	has	been	learned	by	an	ANN	is	much	easier	than	analyzing	what	has	been
learned	by	a	biological	neural	network.	Furthermore,	researchers	involved	in	exploring	learning	algorithms	for	neural	networks	are	gradually	uncovering	general	principles	that	allow	a	learning	machine	to	be	successful.	For	example,	local	vs.	non-local	learning	and	shallow	vs.	deep	architecture.[149]	Hybrid	approaches	Advocates	of	hybrid	models
(combining	neural	networks	and	symbolic	approaches),	claim	that	such	a	mixture	can	better	capture	the	mechanisms	of	the	human	mind.[150]	Gallery	A	single-layer	feedforward	artificial	neural	network.	Arrows	originating	from	x	2	{\displaystyle	\scriptstyle	x_{2}}	are	omitted	for	clarity.	There	are	p	inputs	to	this	network	and	q	outputs.	In	this
system,	the	value	of	the	qth	output,	y	q	{\displaystyle	\scriptstyle	y_{q}}	would	be	calculated	as	y	q	=	K	∗	(	∑	(	x	i	∗	w	i	q	)	−	b	q	)	{\displaystyle	\scriptstyle	y_{q}=K*(\sum	(x_{i}*w_{iq})-b_{q})}	A	two-layer	feedforward	artificial	neural	network.	An	artificial	neural	network.	An	ANN	dependency	graph.	A	single-layer	feedforward	artificial	neural
network	with	4	inputs,	6	hidden	and	2	outputs.	Given	position	state	and	direction	outputs	wheel	based	control	values.	A	two-layer	feedforward	artificial	neural	network	with	8	inputs,	2x8	hidden	and	2	outputs.	Given	position	state,	direction	and	other	environment	values	outputs	thruster	based	control	values.	Parallel	pipeline	structure	of	CMAC	neural
network.	This	learning	algorithm	can	converge	in	one	step.	See	also	ADALINE	Autoencoder	Biologically	inspired	computing	Blue	Brain	Project	Catastrophic	interference	Cognitive	architecture	Connectionist	expert	system	Connectomics	Large	width	limits	of	neural	networks	Machine	learning	concepts	Neural	gas	Neural	network	software	Optical
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